Golden Obsessions: Identifying the Higgs Through the Golden Channel

Roberto Vega-Morales

Northwestern University/Fermilab (Supported by Fermilab Graduate Student Fellowship)

HEP Seminar: Fermilab August 22, 2013

Daniel Stolarski, RVM: arXiv:1208.4840 and Y. Chen, Nhan Tran, RVM: arXiv:1211.1959

Yi Chen, Kunal Kumar, Shashank Shalgar, RVM: in preparation

Yi Chen, Emanuele DiMarco, Joe Lykken, Maria Spiropulu, RVM, Si Xie: in preparation

Overview

- What is the Golden Channel?
- Why the Golden Channel?
- Experimental Searches
- Constructing Likelihood Analysis
- Extracting Higgs Couplings
- Including Detector Effects
- Ongoing/Future Studies
- Conclusions

What is the Golden Channel?: Signal

• Signal consists of $\varphi \to V_1 V_2 \to 4\ell$

- X can in principal be spin 0, 1, or 2
- ullet V_1 and V_2 can be any combination of Z and γ and $\ell=e,\mu$
- In principal $\gamma\gamma$, $Z\gamma$, and ZZ all contribute
- Can lead to a myriad of interference effects between intermediate states as well as between identical final states in $4e/4\mu$ channel

What is the Golden Channel?: Background

- ullet Irreducible background is primarily $qar q o 4\ell$
- This includes both the t-channel and s-channel process

- ullet Also has smaller contribution from fakes and $gg
 ightarrow 4\ell$ (NLO)
- ullet Again V_1 and V_2 can be Z or γ and $\ell=e,\mu$
- \bullet A rich interference structure between various intermediate states as well as between s and t-channel and identical final states for $4e/4\mu$

What is the Golden Channel?: Kinematics

• Ignoring production there are 8 observables in CM frame per event $(s, M_1, M_2, \Theta, \theta_1, \theta_2, \Phi_1, \Phi)$ (N. Cabibbo, A. Maksymowicz, Phys. Rev. 137 (1968))

(Y. Chen, N. Tran, RVM: 1211.1959)

- All angles defined in 4ℓ CM frame (or X in case of signal)
- Correlations between lepton angles studied for some time

J.F. Gunion, Z. Kunszt (1986); Matsurra, J.J. Van Der Bij (1991), + many others

Why the Golden Channel?: 'Practical' Reasons

- \bullet Very well measured with $\lesssim 1-2\%$ mass resolution for ~ 125 GeV
- Good signal to background ratio and well understood theoretically
- NLO corrections are small and mainly affect production
- Make it conducive to 'analytic' methods based on LO calculation
- Analyzed recently using matrix element method (MEM) studies

```
Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, et. al: 1001.3396
A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu: 1001.5300
J. Gainer, K. Kumar, I. Low, RVM: 1108.2274
S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, et. al: 1208.4018
D. Stolarski, RVM: 1208.4840
Avery, Bourilkov, Chen, Cheng, Drozdetskiy, et. al: 1210.0896
J.M. Cambell, W.T. Giele, C. Williams (NLO): 1205.3434
J.M. Cambell, W.T. Giele, C. Williams (NLO): 1204.4424
```

- Focused primarily on signal extraction and/or hypothesis testing
- We would like to move on to direct parameter extraction

Why the Golden Channel?: Physics Reasons

- Can be used as a 'discovery' mode as done for Higgs
- Can directly test EWSB mechanism
- Can measure spin of resonance directly
- Direct probe of CP properties and can be used to extract phases
- $Z\gamma$ and $\gamma\gamma$ occur through higher dim operators \Rightarrow sensitive to NP

Experimental Searches

ullet The Higgs has been discovered in the Golden Channel at ~ 125 GeV!

• Experiments have now entered 'characterization phase'

Experimental Searches

- CMS has also performed studies of CP mixtures
- Assessing sensitivity to real CP-odd ZZ coupling

- Some CP odd/even mixtures still allowed
- Could there be phases?

 Build an analysis framework to fully utilize the power of the golden channel in a model independent manner which takes into account detector effects and systematic uncertainties

- Build an analysis framework to fully utilize the power of the golden channel in a model independent manner which takes into account detector effects and systematic uncertainties
- Set up a likelihood analysis based on the analytic fully differential cross sections in order to perform (multi-) parameter extraction of the various scalar-tensor couplings including any correlations

- Build an analysis framework to fully utilize the power of the golden channel in a model independent manner which takes into account detector effects and systematic uncertainties
- Set up a likelihood analysis based on the analytic fully differential cross sections in order to perform (multi-) parameter extraction of the various scalar-tensor couplings including any correlations
- Construct a continuous detector level likelihood as a function of underlying lagrangian parameters

- Build an analysis framework to fully utilize the power of the golden channel in a model independent manner which takes into account detector effects and systematic uncertainties
- Set up a likelihood analysis based on the analytic fully differential cross sections in order to perform (multi-) parameter extraction of the various scalar-tensor couplings including any correlations
- Construct a continuous detector level likelihood as a function of underlying lagrangian parameters
- Utilizing all 8 possible decay observables in minimal computing time

- Build an analysis framework to fully utilize the power of the golden channel in a model independent manner which takes into account detector effects and systematic uncertainties
- Set up a likelihood analysis based on the analytic fully differential cross sections in order to perform (multi-) parameter extraction of the various scalar-tensor couplings including any correlations
- Construct a continuous detector level likelihood as a function of underlying lagrangian parameters
- Utilizing all 8 possible decay observables in minimal computing time
- Directly extract the Higgs couplings (ratios of couplings) to neutral electroweak gauge bosons in the golden channel final state

Constructing a likelihood analysis

• A likelihood can be formed out of probability density functions (*pdfs*) using full set of decay observables in golden channel

$$L(\vec{\lambda}) = \prod_{\mathcal{O}}^{N} \mathcal{P}(\mathcal{O}|\vec{\lambda})$$

 $\mathcal{O} = (s, M_1, M_2, \vec{\Omega})$

- $\mathcal{P}(\mathcal{O}|\vec{\lambda})$ built out of fully differential cross section for CM observables
- ullet It takes in the set of CM observables ${\cal O}$ as input
- $L(\vec{\lambda})$ a function of lagrangian parameters
- ullet Gives the likelihood for observing a given data set (N events of $\mathcal O$)

Simple Hypothesis Test

- Can use likelihood to construct ratios to do simple hypothesis testing
- Useful for signal from BG extraction and exclusion in favor of SM

$$\Lambda = L(\lambda_a)/L(\lambda_b) \longrightarrow \sigma$$

(D. Stolarski, RVM: 1208.4840)

Parameter Extraction

- Instead of hypothesis testing one can also do parameter extraction
- ullet This is done by maximizing the likelihood with respect to $\vec{\lambda}$

$$\frac{\partial L(\vec{\lambda})}{\partial \vec{\lambda}} \Big|_{\hat{\lambda}} = 0$$

- ullet For a single experiment of N events $\hat{\lambda}$ gives the value of the parameter which maximizes the likelihood
- ullet This is repeated for a large set of ${\mathcal N}$ pseudo-experiments and one obtains a distribution for $\hat{\lambda}$ with a given spread and average value $\hat{\lambda}_{avg}$
- The true value $\vec{\lambda}_o$ will sit in some interval around $\hat{\lambda}_{avg}$
- ullet In the limit as $\mathcal{N}
 ightarrow \infty$ one will find $\hat{\lambda}_{ extstack{avg}}
 ightarrow ec{\lambda}_{o}$

Signal pdf

• The signal *pdf* is formed out of fully differential cross section for $h \to V_1 V_2 \to 4\ell$ where $4\ell = 2e2\mu, 4e, 4\mu$ and $V_{1,2} = Z, \gamma$

$$\mathcal{P}_S(m_h^2, M_1, M_2, \vec{\Omega} | \vec{\lambda}) = \frac{d\sigma_{h \to 4\ell}}{dM_1^2 dM_2^2 d\vec{\Omega}}$$

- Can also contain production spectrum for \vec{p}_T and Y
- Many possible couplings between Higgs and neutral gauge boson pairs
- We assume only Lorentz invariance between a spin-0 scalar and vector boson pairs and allow for general CP mixtures and phases
- Would like to directly extract as many of the parameters as possible (even if they are zero)

Scalar Signal Parametrization

Parametrize scalar couplings to vector boson pairs as the following,

$$\Gamma^{\mu\nu}_{ij}(k,k') = \frac{1}{v} \Big(A_{1ij} m_Z^2 g^{\mu\nu} + A_{2ij} \left(k^{\nu} k'^{\mu} - k \cdot k' g^{\mu\nu} \right) + A_{3ij} \epsilon^{\mu\nu\alpha\beta} k_{\alpha} k'_{2\beta} \Big)$$

- The A_{nij} in principal complex and $ij=ZZ,Z\gamma,\gamma\gamma$ $(A_{1Z\gamma}=A_{1\gamma\gamma}=0)$
- k, k' momentum of vector bosons (or lepton pair system)
- Can for example be derived from the following Lagrangian,

$$\mathcal{L} \sim \frac{1}{v} \varphi \Big(g_h m_Z^2 Z^\mu Z_\mu + g_Z Z^{\mu\nu} Z_{\mu\nu} + \tilde{g}_Z Z^{\mu\nu} \widetilde{Z}_{\mu\nu} + g_{Z\gamma} F^{\mu\nu} Z_{\mu\nu} + \tilde{g}_{Z\gamma} F^{\mu\nu} \widetilde{Z}_{\mu\nu} + g_{\gamma} F^{\mu\nu} F_{\mu\nu} + \tilde{g}_{\gamma} F^{\mu\nu} \widetilde{F}_{\mu\nu} + \ldots \Big)$$

- All operators included in our calculation to form signal pdf
- In differential cross section, pairs of operators will form 'partial widths'
- Depending on interference effects between vertex structures (or operators) some of these can be negative

'Relative widths' for Pairs of Scalar Couplings: $2e2\mu$

• Can form relative widths (to the SM) to examine 'branching fractions' 'Loose Cuts', 125 GeV, All $A_{nij}=1$

'Relative widths' with CMS Cuts: $2e2\mu$

• Will of course be different for different cuts 'CMS Cuts', 125 GeV, All $A_{nii}=1$

'Relative widths' for Pairs of Scalar Couplings: $4e/4\mu$

 \bullet As well as between $2e2\mu$ and $4e/4\mu$ 'CMS Cuts', 125 GeV, All $A_{\it nij}=1$

M_2 Distribution $(2e2\mu)$

Of course we have shapes to aid us as well

(Y. Chen, N. Tran, RVM:1211.1959)

- Slope of M_2 as upper cutoff is approached contains information about CP properties R. Boughezal, T. LeCompte, Petriello: 1208.4311
- How phase space is chosen affects sensitivity to various couplings

'Relative differential Widths' as Discriminators: $2e2\mu$

- ullet Use all decay observables ${\cal O}$ and assuming pure signal sample
- Simple hypothesis test to assess ability to distinguish operators
- For example, $Z_{\mu}Z^{\mu}$, $Z^{\mu\nu}Z_{\mu\nu}$, and $Z^{\mu\nu}F_{\mu\nu}$ (couplings set to one)

- Golden channel can distinguish $Z_{\mu}Z^{\mu}\&Z^{\mu\nu}Z_{\mu\nu}$ with $\mathcal{O}(40)$ events
- Can distinguish $Z_{\mu}Z^{\mu}\&Z^{\mu\nu}F_{\mu\nu}$ with $\mathcal{O}(20)$ events

- Instead of hypothesis testing, now we do direct parameter extraction
- Perform a 6 parameter fit for all couplings assuming all real

1k Events, 5k Pseudo Experiments,
$$R_n^{ij} = A_{nij}/A_{1ZZ}$$

• Perform a 6 parameter fit for all couplings assuming couplings real 1k Events, 5k Pseudo Experiments, $R_n^{ij} = A_{nij}/A_{1ZZ}$

• We can see how fit error changes with number of events N = 30 to 3000 Events per Pseudo Experiment

We can see how fit error changes with number of events

• Can also examine correlations between parameters 1k Events, 5k Pseudo Experiments, $R_n^{ij} = A_{nii}/A_{177}$

• Can also examine correlations between parameters

Background pdf

• The leading order irreducible background pdf is formed out of fully differential cross section for $q\bar{q}\to 4\ell$

$$\mathcal{P}_B(s, M_1, M_2, \vec{\Omega}) = \frac{d\sigma_{q\bar{q}\to 4\ell}}{dM_1^2 dM_2^2 d\vec{\Omega}}$$

- Will discuss production $W(s, \vec{p}_T, Y)$ spectrum later
- ullet BG composed of mostly $Z\gamma$ t-channel

Shapes are strong discriminator between signal and background

• $M_{1,2}$ and $\cos\Theta$ differential spectrums Y. Chen, N. Tran, RVM: 1211.1959

ullet cos $heta_{1,2}$ differential spectrums Y. Chen, N. Tran, RVM: 1211.1959

• Φ_1 and Φ differential spectrums Y. Chen, N. Tran, RVM: 1211.1959

ullet $(M_{1,2},\Phi)$ doubly differential spectrums Y. Chen, N. Tran, RVM: 1211.1959

• $(\cos\theta_{1,2},\Phi)$ doubly differential spectrum Y. Chen, N. Tran, RVM: 1211.1959

- Of course projections don't show correlations contained in fully diff cxn
- Working on animations for webpage (soon to be public)

Signal + Background Likelihood

Can now form signal plus background likelihood

$$L(f, \vec{\lambda}) = \prod_{\mathcal{O}}^{N} \mathcal{P}_{S+B}(\mathcal{O}|f, \vec{\lambda})$$

With signal plus background

$$\mathcal{P}_{S+B}(\mathcal{O}|f,\vec{\lambda}) = f \times \mathcal{P}_B(s, M_1, M_2, \vec{\Omega}) + (1-f) \times \mathcal{P}_S(m_h^2, M_1, M_2, \vec{\Omega}|\vec{\lambda})$$

- ullet Likelihood now function of background fraction f in addition to $ec{\lambda}$
- Can now easily perform fits for $\vec{\lambda}$ and f

'Detector level' Likelihood

- Ideally one also wants to include detector effects in likelihood
- Need a likelihood that takes reconstructed CM observables as input
- This can be done by a convolution of the generator level *pdf* with a transfer function $T(\vec{X}^R|\vec{X}^G)$ over generator level observables

$$P(\vec{X}^{\mathrm{R}}|\vec{\lambda}) = \int P(\vec{X}^{\mathrm{G}}|\vec{\lambda})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{\mathrm{G}}$$

- $T(\vec{X}^R|\vec{X}^G)$ represents probability to observe \vec{X}^R given \vec{X}^G
- We assume transfer functions of leptons are independent
- This integration takes us from generator level (\vec{X}^G) observables to reconstructed detector level observables (\vec{X}^R)
- Conceptually simple, but requires a number of steps to perform (and massive computing) see technical note for details
- Have performed this convolution for both signal and background

Normalization and Averaging over Y, p_T

• We then average over reconstructed p_T , Y and do not include them as observables in likelihood

$$P(s, M_1, M_2, \vec{\Omega}) = \int P(\vec{X}) dY d\mathbf{p}_T$$

(where we implicitly use only reconstructed observables from now on)

Need overall normalization of pdf for detector level decay observables

$$\mathcal{N} = \int P(s, M_1, M_2, \vec{\Omega})$$
$$\times ds dM_1^2 dM_2^2 d\vec{\Omega}$$

$$\mathcal{P}(s, M_1, M_2, \vec{\Omega}) = \mathcal{N}^{-1} \times P(s, M_1, M_2, \vec{\Omega})$$

- Can be obtained via Monte Carlo integration see technical note for details
- Now have all pieces necessary for detector level likelihood $L_R(\vec{\lambda})$
- Can perform fits in the same manner as in the generator level studies
- Once $L_R(\vec{\lambda})$ is constructed fits to parameters are very fast

Reconstructed Level Observables

 We plot our detector level projections (red) on top of Madgraph data which has had detector effects applied to it (blue)

Reconstructed Level Likelihoods

We can do the same thing with the likelihoods

Preliminary

These are the detector level likelihoods

Summary of Analysis Procedure

Direct Extraction of Higgs Couplings in Golden Channel

- Obtain analytic generator level pdf $P(\vec{X}^G|\vec{\lambda})$ from fully diff cxn
- Perform convolution with transfer function

$$P(\vec{X}^{\mathrm{R}}|\vec{\lambda}) = \int P(\vec{X}^{\mathrm{G}}|\vec{\lambda})T(\vec{X}^{R}|\vec{X}^{G})d\vec{X}^{\mathrm{G}}$$

• Normalize pdf over \vec{X}^R , build detector level likelihood as function of $\vec{\lambda}$

$$L(\vec{\lambda}) = \prod_{\vec{X}^R}^N \mathcal{P}(\vec{X}^R | \vec{\lambda})$$

• Maximize likelihood with respect to undetermined parameters

$$\frac{\partial L(\vec{\lambda})}{\partial \vec{\lambda}} \Big|_{\hat{\lambda}} = 0$$

• Extract $\hat{\lambda}$ for a given data set of N observables

Ongoing Work/Down the Road

- Things left to Implement/Optimize:
 - Optimization of convolution especially for signal pdf
 - ► Optimization of production effects
 - Inclusion of systematic uncertainties
 - Strategy for performing fits and optimal parametrization
- Once framework is sufficiently optimized:
 - ▶ Perform detailed study of Higgs ZZ couplings assuming near SM
 - ightharpoonup Perform a dedicated study of $Z\gamma$ and $\gamma\gamma$ couplings
 - ▶ Perform detailed comparison of $2e2\mu$ vs $4e/4\mu$ channels
 - Apply analysis framework to study $h \to 2\ell\gamma$ channel
 - Extract Higgs couplings!

Conclusion

- Golden Channel indispensable window to underlying physics
- NP could show up in small deviations of the kinematic distributions
- We have built a continuous, detector level, likelihood to maximize the information contained in this channel
- We utilize all 8 reconstructed Higgs CM decay observables
- Can perform direct multi-parameter extraction to pin down Higgs couplings to neutral EW gauge bosons including correlations
- An amazing channel containing vast information and which should be carefully studied from all angles

Conclusion

- Golden Channel indispensable window to underlying physics
- NP could show up in small deviations of the kinematic distributions
- We have built a continuous, detector level, likelihood to maximize the information contained in this channel
- We utilize all 8 reconstructed Higgs CM decay observables
- Can perform direct multi-parameter extraction to pin down Higgs couplings to neutral EW gauge bosons including correlations
- An amazing channel containing vast information and which should be carefully studied from all angles
- Thank you to Fermilab Graduate Student Fellowship program!

• Perform a 6 parameter fit for all A_{2ij} , A_{3ij} assuming SM 100 Signal + 25 Background Events, 130 Pseudo Exp $R_n^{ij} = A_{nij}/A_{1ZZ}$

• Perform a 6 parameter fit for all A_{2ij} , A_{3ij} assuming SM 100 Signal + 25 Background Events, 130 Pseudo Exp $R_n^{ij} = A_{nii}/A_{1ZZ}$

We must now also fit to the background fraction
 100 Signal + 25 Background Events, 130 Pseudo Exp

Background fraction

• Can also examine correlations between parameters

100 Signal
$$+$$
 25 Background Events, 130 Pseudo Exp

$$R_n^{ij} = A_{nij}/A_{1ZZ}$$
 R^{ZZ}
 R^{ZZ}

Can also examine correlations between parameters

100 Signal
$$+$$
 25 Background Events, 130 Pseudo Exp

Extra Slides: 'Absolute Branching Ratios' - $2e2\mu$

'Absolute branching ratios' contain some information about shape

Extra Slides: 'Absolute Branching Ratios' - 4e

• Again differ between $2e2\mu$ and $4e/4\mu$

Extra Slides: $q\bar{q} \rightarrow 2e2\mu$ Background Components

• s-channel 4ℓ process

• *t* + *u*-channel di-boson production

- Including their interference
- ullet The relative fraction of these components depends on s

Extra Slides: BG Relative Fractions - $2e2\mu$ Channel

- Left: 4 GeV $< M_{1,2} < 120$ GeV
- ullet Right: 40 GeV $< M_1 <$ 120 GeV and 10 GeV $< M_2 <$ 120 GeV

Y. Chen, N. Tran, RVM: 1211.1959

- ullet In Higgs signal region \sim 125 GeV $Z\gamma$ di-boson production dominates
- ullet Small contribution from s-channel $Z o 2e2\mu$ production
- Will see this can still affect angular distributions

Extra Slides: BG Validation with Madgraph/POWHEG

• Phase space: 110 GeV \sqrt{s} < 140 GeV with 40 GeV < M_1 <120 GeV and 10 GeV < M_2 <120 GeV

Extra Slides: BG Validation with Madgraph/POWHEG

The lepton decay angles

Extra Slides: 'Branching Ratios' with 'No Z' Cuts - $2e2\mu$

• 'Branching ratios' with a Z boson 'cut out' of phase space

Extra Slides: 'Branching Ratios' with 'No Z' Cuts - $4e/4\mu$

• 'Branching ratios' with a Z boson 'cut out' of phase space

Extra Slides: Production Spectrum

We need a function for the 'production' spectrum to form full pdf

$$\begin{split} &P(s,\vec{p}_T,Y,M_1,M_2,\vec{\Omega}|\vec{\lambda}) = \\ &\frac{d\sigma_{4\ell}(s,M_1,M_2,\vec{\Omega}|\vec{\lambda})}{dM_1^2dM_2^2d\vec{\Omega}} \times W_{\mathrm{prod}}(s,\vec{p}_T,Y) \end{split}$$

- Several options for obtaining W_{prod} :
 - Can construct 'analytic' parametrization of parton distribution functions (see Gao, Gritsan et. al. 1001.3396)
 - Use 'look up' tables and boost events accordingly
 - ▶ NLO effects can be included here as well (see Campbell, Giele, Williams)
- Currently working on finding optimal implementation
- Since we ultimately fit to ratios of parameters as well as fractional yield, analysis largely insensitive to these 'production effects'
- Enters mainly as an acceptance effect due to detector

Extra Slides: Convolution of pdf

- It is a 12 dimensional integration over the components of the three momenta of the four massless final state leptons
- We can parametrize these 12 observables in the CM frame as

$$\vec{X} = (s, \mathbf{p}_T, Y, M_1, M_2, \vec{\Omega})$$

$$d\vec{X} = ds d\mathbf{p}_T dY dM_1^2 dM_2^2 d\vec{\Omega}$$

(we implicitly include angle associated with a global rotation of entire event)

- Not convenient basis for the integration so we must transform to a better basis where integration can be done
- Transform from CM frame to components of the three momenta of the four massless final state leptons $(\vec{X}^G \to \vec{P}^G)$

Extra Slides: $p_{i||}$ and $\vec{p_{i}}_{\perp}$ Basis

- We assume that detector smearing will only affect the component of the lepton momentum parallel to the direction $(p_{i\parallel})$ of motion and not the two perpendicular components $(\vec{p}_{i\perp})$ (Note that this is equivalent to assuming angular resolution effects due to detector smearing can be neglected)
- Now decompose the lepton three momenta $ec{p}_i$ in terms of $p_{i||}$ and $ec{p}_{i\perp}$
- ullet In $(p_{i||},ec{p_{i}}_{\perp})$ basis only transfer function associated with $p_{i||}$ is non-trivial
- The transfer function for the perpendicular components can be represented simply as a delta function for each perpendicular direction
- This allows for trivial integration over the 8 variables associated with \vec{p}_i^{\perp}
- Of course one must include the proper Jacobian in this transformation see technical note for details

Extra Slides: Final Integration

- We have a 4D integration over $\prod_{i}^{4} p_{i||}$ left to to do
- ullet Transfer functions parametrized in terms of variables $c_i = p_i{}^{\rm R}_{||}/p_i{}^{\rm G}_{||}$
- ullet Where we have $c_1c_2=(M_1^{
 m R}/M_1^{
 m G})^2$ and $c_3c_4=(M_2^{R}/M_2^{G})^2$
- ullet Substitute $c_2,c_4 o M_1{}^{
 m G}M_2{}^{
 m G}$ to obtain final basis used for integration

$$P(\vec{X}^{\mathrm{R}}) = \int P(\vec{X}^{\mathrm{G}}) T(\vec{c} \mid \vec{P}^{G})$$
$$\times |\mathcal{J}| dc_{1} dc_{3} dM_{1}^{2^{\mathrm{G}}} dM_{2}^{2^{\mathrm{G}}}$$

- ullet Where $|\mathcal{J}|$ encompasses all change of variables in intermediate steps
- This integral is manageable (with extra complication in case of signal)
- Once performed we are left with a detector level *pdf* in terms of \vec{X}^R

Extra Slides: List of Systematics Considered

- We are treating the following systematics:
 - ► Harder/softer lepton energy response
 - Wider/narrower lepton energy resolution
 - ► Harder/softer 4l spectrum
 - Central/forward 4l spectrum
 - Wrong mass assumption for signal
 - Systematics from different choice for production spectrum
- Can implement into likelihood via nuisance parameters

$$\mathcal{P}(\mathcal{O}|n) = (1 - n) \mathcal{P}_0(\mathcal{O}) + n P_1 \mathcal{O}$$
$$= P_0 \mathcal{O} + n [P_1 \mathcal{O} - P_0 \mathcal{O}]$$

• Maximize w.r.t. to *n* for each systematic

• Can we directly probe the CP nature of the $h - \gamma \gamma$ couplings?

- Can we directly probe the CP nature of the $h-\gamma\gamma$ couplings?
- Recent proposals by some theorists include:

- Can we directly probe the CP nature of the $h \gamma \gamma$ couplings?
- Recent proposals by some theorists include:
 - Measuring correlations in $VBF \to \gamma \gamma$
 - M. Buckley, M. Ramsey-Musolf: 1208.4840
 - Measuring correlations between photons which convert in detector

F. Bishara, Y. Grossman, R. Harnik, D. Robinson, J.Shu, J. Zupan: TALK at KITP WORKSHOP

- Other possibilities which we are working on include:
 - lacktriangle Extracting the $\gamma\gamma$ and $Z\gamma$ component from golden channel

- Other possibilities which we are working on include:
 - \blacktriangleright Extracting the $\gamma\gamma$ and $Z\gamma$ component from golden channel

▶ Studying interference in $h \to Z\gamma/\gamma\gamma \to 2\ell\gamma \propto A_2^{Z\gamma}*A_3^{\gamma\gamma} + \cdots$

